An oil drop carries six electronic charges, has a mass of $1.6 \times 10^{-12} g$ and falls with a terminal velocity in air. The magnitude of vertical electrical electric field required to  make the drop move upward with the same speed as was formely moving is ........$kN/C$

  • A

    $16.3$

  • B

    $32.7$

  • C

    $98$

  • D

    None of the above

Similar Questions

Two charges $\pm 10\; \mu C$ are placed $5.0\; mm$ apart. Determine the electric field at $(a)$ a point $P$ on the axis of the dipole $15 cm$ away from its centre $O$ on the side of the positive charge, as shown in Figure $(a),$ and $(b)$ a point $Q , 15\; cm$ away from $O$ on a line passing through $O$ and normal to the axis of the dipole, as shown in Figure.

A body of mass $M$ and charge $q$ is connected to a spring of spring constant $k$. It is oscillating along $x-$ direction about its equilibrium position, taken to be at $x = 0$, with an amplitude $A$. An electric field $E$ is applied along the $x-$ direction. Which of the following statements is correct?

  • [JEE MAIN 2018]

Six charges, three positive and three negative of equal magnitude are to be placed at the vertices of a regular hexagon such that the electric field at $O$ is double the electric field when only one positive charge of same magnitude is placed at $R$. Which of the following arrangements of charges is possible for $P,\,Q,\,R,\,S,\,T,\,$ and $U$ respectively

  • [IIT 2004]

Explain electric field and also electric field by point charge.

Diagram shows symmetrically placed rectangular insulators with uniformly charged distributions of equal magnitude. At the origin, the net field net ${\vec E_{net}}$ is :-